Autoprotolysis of Water

Pure water has an equilibrium with H₃O⁺ and OH⁻ called **autoprotolysis** or **autodissociation**.

$$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$$

 $base_1 \quad acid_2 \quad acid_1 \quad base_2$

For water at 25 °C

$$K_w = [H_3O^+][OH^-] = 1.0 \text{ x } 10^{-14} \text{ M}^2$$

 K_{w} , the **ion product** or **dissociation constant** of water, is obeyed for all aqueous solutions, except at extremely high concentration.

Neutral, Acidic, Basic

For neutral water,

$$[H_3O^+] = [OH^-] = 1.0 \text{ x } 10^{-7} \text{ M}$$

For an acidic solution,

$$[H_3O^+] > 10^{-7} \text{ M} \text{ and } [OH^-] < 10^{-7} \text{ M}$$

For a basic solution,

$$[H_3O^+] < 10^{-7} \text{ M} \text{ and } [OH^-] > 10^{-7}$$

pH and pOH

- ✓ The letter "p" in front of a quantity means "the negative logarithm of" the quantity.
- pH and pOH are defined as

$$pH = -log [H_3O^+]$$
 $pOH = -log [OH^-]$

• The relationship between pH and pOH is derived from K_w :

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

 $\log K_w = \log[H_3O^+][OH^-] = -14.00$
 $-\log K_w = pK_w = -\log[H_3O^+] - \log[OH^-] = 14.00$
 $pK_w = pH + pOH = 14.00$

Neutral, Acidic, Basic

For neutral water,

$$pH = pOH = 7$$

For an acidic solution,

$$pH < 7$$
 and $pOH > 7$

For a basic solution,

$$pH > 7$$
 and $pOH < 7$

For all solutions

$$pH + pOH = 14.00$$

Simultaneous Equilibria Solution of a Strong Acid in Water — 5.0 x 10⁻² M HCl

Charge Balance Expression - expresses the total concentration of one ion in terms of equivalent concentrations of ions of the opposite charge.

$$[H_3O^+] = [H_3O^+]_{acid} + [H_3O^+]_{water}$$

 $[H_3O^+] = [Cl^-] + [OH^-]$

Mass Balance Expression - accounts for the distribution of the analytical concentration (what was added) in terms of concentrations of species formed through dissociation (what you get) in solution.

$$C = [H_3O^+]_{acid} = [Cl^-] = 5.0 \text{ x } 10^{-2} \text{ M}$$

Solution of a Strong Acid in Water — 5.0 x 10⁻² M HCl Simplifying Assumptions

Substituting the mass balance result into the previous charge balance expression gives

$$[H_3O^+] = 5.0 \times 10^{-2} + [OH^-]$$

In pure water $[OH^-] = 1.0 \times 10^{-7} M$, which is negligible by comparison to $5.0 \times 10^{-2} M$. Moreover, this is an acidic solution, so by LeChatelier's principal we expect that $[OH^-] << 1.0 \times 10^{-7} M$. Therefore, we can ignore $[OH^-]$ in our charge balance expression and write

$$[H_3O^+] \approx 5.0 \times 10^{-2} \text{ M}$$

From this we calculate

$$pH = -log(5.0 \times 10^{-2}) = 1.30$$

- Only the HCl was a major source of H_3O^+ in this solution.
- To find the concentration of hydroxide ion in the solution, we use $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$:

$$[OH^{-}] = K_w/[H_3O^{+}] = 1.0 \times 10^{-14}/5.0 \times 10^{-2}$$

= 2.0 x 10⁻¹³ M = $[H_3O^{+}]_{water}$

Strong Acid in Water

$$HA + H_2O \rightarrow H_3O^+ + A^-$$

For solutions of a **strong acid** in water at moderate concentrations $(C_{\rm HA} > 10^{-5} \, {\rm M})$, assume virtually all ${\rm H_3O^+}$ comes from the acid. Thus,

$$[\mathrm{H_3O}^+] = C_{\mathrm{HA}}$$

$$pH = -log C_{HA}$$

$$pOH = 14.00 - pH$$

Strong Base in Water

$$M(OH)_n(aq) \rightarrow M^{n+}(aq) + nOH^{-}(aq)$$

For solutions of a **strong base** in water at moderate concentrations $(C_{\rm B} > 10^{-5} \, {\rm M})$, assume virtually all OH⁻ comes from the base. Thus,

$$[OH^-] = nC_B$$

$$pOH = -log nC_B$$

$$pH = 14.00 - pOH$$

Extreme Dilution

- Any acid or base at extreme dilution (<10⁻⁷ M) makes no significant contribution to the total [H₃O⁺] or [OH⁻] concentration in the solution.
- Thus, water is the principal source of both ions:

$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$$

 $pH = pOH = 7.00$